Sains Malaysiana 52(8)(2023): 2191-2207
http://doi.org/10.17576/jsm-2023-5208-03
Removal Efficiency for Micro-Polystyrene in Water by the
Oil-Based Ferrofluid Employ Response Surface Methodology
(Keberkesanan
Penyingkiran Mikro-Polisterina dalam Air oleh Bendalir Magnetik Berasaskan
Minyak menggunakan Kaedah Gerak Balas Permukaan)
NATASHA NIZAM1, SUMITHRA MOHANASUNTHAR1,
ALYZA A. AZMI1, SABIQAH TUAN ANUAR1,
YUSOF SHUAIB IBRAHIM1 & WAN MOHD AFIQ WAN MOHD
KHALIK1,2,*
1Microplastic
Research Interest Group, Faculty of Science and Marine Environment, Universiti
Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
2Water
Analysis Research Centre, Faculty of Science and Technology, Universiti
Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
Received: 15 February 2023/Accepted: 12 July
2023
Abstract
This
research article presents a study on the potential use of oil-based ferrofluid
for the efficient removal of microplastics from water. The targeted analyte,
micro-polystyrene (micro-PS), was chosen along with palm oil as the carrier
liquid. Fourier Transform Infrared (FTIR) analysis was conducted to identify
the main peaks in the ferrofluid, including carboxyl group (1542 cm-1), C-H bonding (1022 cm-1),
CH2 bonding (2941 cm-1), CH3 bonding (3461 cm-1),
C=C bonding (1255 cm-1), and Fe-O (597.34 cm-1). A
comprehensive investigation of the synergistic effect of six variables was
performed: volume of oil (4-15 mL), weight of magnetite nanoparticles (0.1-0.2
g), stirring rate (132-468 rpm), contact time (3-12 min), pH value of water
samples (pH 6-8), and effect on ionic strength (0-16 g/L). Response surface
methodology, including 26-Plackett-Burman and 24-central
composite design, were employed to establish the relationship between the
variables. The optimum operational settings proposed by the model were as
follows: volume of oil (14.6 mL), weight of magnetite nanoparticles (0.1 g),
stirring rate (216 rpm), contact time (3.29 min), pH value of water samples (pH
6-6.5), and effect on ionic strength (16 g/L), resulting in a remarkable
removal efficiency of 91.09 ± 0.99%. The method exhibited desirable figures of
merit, including a low bias (%RSD) of below 5% and the ability to reuse the
ferrofluids for up to five cycles. Additionally, an analytical greenness metric
was employed to assess the environmental impact of the sample preparation
process, with a green score of 0.69/1.0 (indicating a light green colour).
Future work in this field could focus on the scalability of the developed
method and its applicability to real-wastewater treatment.
Keywords: Emerging contaminant; magnetic separation; marine
debris; microplastic
Abstrak
Artikel penyelidikan ini membincangkan satu kajian mengenai
kegunaan berpotensi bendalir magnetik berasaskan minyak untuk penyingkiran yang
berkesan bagi mikroplastik daripada air. Analit sasaran, mikro-polisterena
(mikro-PS), dipilih bersama dengan minyak kelapa sawit sebagai cecair pembawa.
Analisis Transformasi Fourier Inframerah (FTIR) telah dijalankan untuk mengenal
pasti puncak-puncak utama dalam bendalir magnetik, termasuk kumpulan karboksil
(1542 cm-1), ikatan C-H (1022 cm-1), ikatan CH2 (2941 cm-1), ikatan CH3 (3461 cm-1), ikatan
C=C (1255 cm-1) dan Fe-O (597.34 cm-1). Kajian menyeluruh
tentang kesan sinergi enam pemboleh ubah telah dijalankan: isi padu minyak
(4-15 mL), berat nanozarah magnetit (0.1-0.2 g), kadar pengacuan (132-468 rpm),
masa sentuhan (3-12 min), nilai pH sampel air (pH 6-8) dan kesan ke atas kekuatan
ion (0-16 g/L). Kaedah gerak balas permukaan, termasuk 26-Plackett-Burman
dan 24-reka bentuk komposit pusat digunakan untuk menetapkan
hubungan antara pemboleh ubah tersebut. Tetapan operasi optimum yang
dicadangkan oleh model adalah seperti berikut: isi padu minyak (14.6 mL), berat
nanozarah magnetit (0.1 g), kadar pengacuan (216 rpm), masa sentuhan (3.29
min), nilai pH sampel air (pH 6-6.5) dan kesan ke atas kekuatan ion (16 g/L)
yang menghasilkan kecekapan penyingkiran yang baik pada tahap 91.09 ± 0.99%.
Kaedah ini menunjukkan ciri prestasi yang diingini, termasuk kebolehan untuk
digunakan semula hingga lima kitar bagi bendalir magnetik dan ralat rendah
(%RSD) di bawah 5%. Tambahan pula, satu metrik kelestarian analitik digunakan
untuk menilai impak alam sekitar proses penyediaan sampel dengan skor
kelestarian 0.69/1.0 (mewakili warna hijau muda). Penyelidikan masa depan dalam
bidang ini boleh memberi tumpuan kepada skalabiliti kaedah yang dibangunkan dan
kebolehgunaannya dalam rawatan air sisa sebenar.
Kata kunci: Bahan pencemar baharu muncul; mikroplastik;
pemisahan magnetik; serpihan sampah
REFERENCES
Amelia, T.S.M., Khalik, W.M.A.W.M., Ong,
M.C., Shao, Y.T., Pan, H.J. & Bhubalan, K. 2021. Marine microplastics as
vectors of major ocean pollutants and its hazards to the marine ecosystem and
humans. Progress in Earth and Planetary Science 8(1): 1-26.
Asadollahzadeh, M., Tavakoli, H.,
Torab-Mostaedi, M., Hosseini, G. & Hemmati, A. 2014. Response surface
methodology based on central composite design as a chemometric tool for
optimization of dispersive-solidification liquid–liquid microextraction for
speciation of inorganic arsenic in environmental water samples. Talanta 123: 25-31.
Bezerra, M.A.,
Santelli, R.E., Oliveira, E.P., Villar, L.S. & Escaleira, L.A. 2008. Response surface methodology (RSM) as a tool for optimization
in analytical chemistry. Talanta 76(5): 965-977.
Chen, F., Liu, X., Li, Z., Yan, S., Fu, H.
& Yan, Z. 2021. Investigation of the rheological properties of
Zn-ferrite/perfluoropolyether oil-based ferrofluids. Nanomaterials 11(10):
2653.
Choong, W.S., Hadibarata, T., Yuniarto, A.,
Tang, K.H.D., Abdullah, F., Syafrudin, M., Al Farraj, D.A. & Al-Mohaimeed,
A.M. 2021. Characterization of microplastics in the water and sediment of Baram
River estuary, Borneo Island. Marine Pollution Bulletin 172: 112880.
Davudabadi Farahani,
M., Shemirani, F., Fasih Ramandi, N. & Gharehbaghi, M. 2015. Ionic liquid as a ferrofluid carrier for dispersive solid
phase extraction of copper from food samples. Food Analytical Methods 8(8): 1979-1989.
Deng, Y., Zhang, Y., Lemos, B. & Ren, H.
2017. Tissue accumulation of microplastics in mice and biomarker responses
suggest widespread health risks of exposure. Scientific Reports 7(1):
46687.
Hamzah, S., Ying, L.Y., Azmi, A.A.A.R.,
Razali, N.A., Hairom, N.H.H., Mohamad, N.A. & Harun, M.H.C. 2021.
Synthesis, characterisation and evaluation on the performance of ferrofluid for
microplastic removal from synthetic and actual wastewater. Journal of
Environmental Chemical Engineering 9(5): 105894.
Hanrahan, G. & Lu, K. 2006. Application
of factorial and response surface methodology in modern experimental design and
optimization. Critical Reviews in Analytical Chemistry 36(3-4): 141-151.
Henriques, K. 2022. Analysis of the
microplastic removal efficiency of synthesized ferrofluids and the development
of an automated prototype for aquatic environments. The Columbia Junior
Science Journal 2022: 1-5.
Hüffer, T., Weniger, A.K. & Hofmann, T.
2018. Sorption of organic compounds by aged polystyrene microplastic particles. Environmental Pollution 236: 218-225.
Issac, M.N. & Kandasubramanian, B. 2021.
Effect of microplastics in water and aquatic systems. Environmental Science
and Pollution Research 28(16): 19544-19562.
Javed, M., Shaik, A.H., Khan, T.A., Imran,
M., Aziz, A., Ansari, A.R. & Chandan, M.R. 2018. Synthesis of stable waste
palm oil based CuO nanofluid for heat transfer applications. Heat and Mass
Transfer 54: 3739-3745.
Joseph, A. & Mathew, S. 2014.
Ferrofluids: Synthetic strategies, stabilization, physicochemical features,
characterization, and applications. ChemPlusChem 79(10): 1382-1420.
Kadakia, K. 2012. Removal of arsenic
contamination from water using magnetite nanoparticles. The National High
School Journal 2012: 1-7.
Khalik, W.M.A.W.M., Ibrahim, Y.S., Anuar,
S.T., Govindasamy, S. & Baharuddin, N.F. 2018. Microplastics analysis in
Malaysian marine waters: A field study of Kuala Nerus and Kuantan. Marine
Pollution Bulletin 135: 451-457.
Lapointe, M., Farner, J.M., Hernandez, L.M.
& Tufenkji, N. 2020. Understanding and improving microplastic removal
during water treatment: Impact of coagulation and flocculation. Environmental Science & Technology 54(14): 8719-8727.
Li, J., Huang, W., Xu,
Y., Jin, A., Zhang, D. & Zhang, C. 2020. Microplastics
in sediment cores as indicators of temporal trends in microplastic pollution in
Andong salt marsh, Hangzhou Bay, China. Regional Studies in Marine Science 35:
101149.
Li, L.C. & Li, I.K. 2021. Study of
ferrofluid and magnetic fields. Proceedings of the International Conference
on Industrial Engineering and Operations Management. pp. 6751-6761.
Liu, H., Zhou, X., Ding, W., Zhang, Z.,
Nghiem, L.D., Sun, J. & Wang, Q. 2019. Do microplastics affect biological
wastewater treatment performance? Implications from bacterial activity
experiments. ACS Sustainable Chemistry & Engineering 7(24):
20097-20101.
Ma, B., Xue, W., Hu, C., Liu, H., Qu, J.
& Li, L. 2019. Characteristics of microplastic removal via coagulation and
ultrafiltration during drinking water treatment. Chemical Engineering
Journal 359: 159-167.
Ma, M., Liu, S., Su, M., Wang, C., Ying, Z.,
Huo, M., Lin, Y. & Yang, W. 2022. Spatial distribution and potential
sources of microplastics in the Songhua River flowing through urban centers in
Northeast China. Environmental Pollution 292: 118384.
Martinez, L. & Kim, B. 2020. Removal of
microplastics in water using oil-based ferrofluid solution. New Jersey City
University.
Mušović, J., Vraneš, M., Papović,
S., Gadžurić, S., Ražić, S. & Trtić-Petrović, T. 2023.
Greener sample preparation method for direct determination of Cd (II) and Pb
(II) in river sediment based on an aqueous biphasic system with functionalized
ionic liquids. Journal of Molecular Liquids 369: 120974.
Nabeel Rashin, M., Kutty, R.G. &
Hemalatha, J. 2014. Novel coconut oil based magnetite nanofluid as an
ecofriendly oil spill remover. Industrial & Engineering Chemistry
Research 53(40): 15725-15730.
Nayebi, R. & Shemirani, F. 2021.
Ferrofluids-based microextraction systems to process organic and inorganic
targets: The state-of-the-art advances and applications. TrAC Trends in
Analytical Chemistry 138: 116232.
Oda, S. & Kitamoto, Y. 2017.
Relationship between ion concentration of ferrofluid and response signals of
magnetic nanoparticles against ac magnetic fields. AIP Advances 7(5):
056729.
Oehlsen, O., Cervantes-Ramírez, S.I.,
Cervantes-Avilés, P. & Medina-Velo, I.A. 2022. Approaches on ferrofluid
synthesis and applications: Current status and future perspectives. ACS
Omega 7(4): 3134-3150.
Peñalver, R., Costa-Gómez, I.,
Arroyo-Manzanares, N., Moreno, J.M., López-García, I., Moreno-Grau, S. &
Córdoba, M.H. 2021. Assessing the level of airborne polystyrene microplastics
using thermogravimetry-mass spectrometry: Results for an agricultural area. Science
of The Total Environment 787: 147656.
Phor, L. & Kumar, V. 2019. Self-cooling
by ferrofluid in magnetic field. SN Applied Sciences 1: 1-9.
Pizzichetti, A.R.P., Pablos, C.,
Álvarez-Fernández, C., Reynolds, K., Stanley, S. & Marugán, J. 2021.
Evaluation of membranes performance for microplastic removal in a simple and
low-cost filtration system. Case Studies in Chemical and Environmental
Engineering 3: 100075.
Poerio, T., Piacentini, E. & Mazzei, R.
2019. Membrane processes for microplastic removal. Molecules 24(22):
4148.
Pramanik, B.K., Pramanik, S.K. & Monira,
S. 2021. Understanding the fragmentation of microplastics into nano-plastics
and removal of nano/microplastics from wastewater using membrane, air flotation
and nano-ferrofluid processes. Chemosphere 282: 131053.
Rajala, K., Grönfors, O., Hesampour, M.
& Mikola, A. 2020. Removal of microplastics from secondary wastewater
treatment plant effluent by coagulation/flocculation with iron, aluminum and
polyamine-based chemicals. Water Research 183: 116045.
Scherer, C. & Figueiredo Neto, A.M.
2005. Ferrofluids: Properties and applications. Brazilian Journal of Physics 35: 718-727.
Shi, X., Chen, Z., Liu, X., Wei, W. &
Ni, B.J. 2022. The photochemical behaviors of microplastics through the lens of
reactive oxygen species: Photolysis mechanisms and enhancing
photo-transformation of pollutants. Science of The Total Environment 2022: 157498.
Shi, Z.G., Zhang, Y. & Lee, H.K. 2010.
Ferrofluid-based liquid-phase microextraction. Journal of Chromatography A 1217(47): 7311-7315.
Siipola, V., Pflugmacher, S., Romar, H.,
Wendling, L. & Koukkari, P. 2020. Low-cost biochar adsorbents for water
purification including microplastics removal. Applied Sciences 10(3):
788.
Sun, J., Dai, X., Wang, Q., van Loosdrecht,
M.C. & Ni, B.J. 2019. Microplastics in wastewater treatment plants:
Detection, occurrence and removal. Water Research 152: 21-37.
Tofa, T.S., Kunjali, K.L., Paul, S. &
Dutta, J. 2019. Visible light photocatalytic degradation of microplastic
residues with zinc oxide nanorods. Environmental Chemistry Letters 17:
1341-1346.
Wang, H., Meng, Y., Li, Z., Dong, J. &
Cui, H. 2022. Steady-state and dynamic rheological properties of a mineral
oil-based ferrofluid. Magnetochemistry 8(9): 100.
Wenzel, M., Fischer, B., Renner, G.,
Schoettl, J., Wolf, C., Schram, J., Schmidt, T.C. & Tuerk, J. 2022.
Efficient and sustainable microplastics analysis for environmental samples
using flotation for sample pre-treatment. Green Analytical Chemistry 3:
100044.
Wojnowski, W., Tobiszewski, M.,
Pena-Pereira, F. & Psillakis, E. 2022. AGREEprep–Analytical greenness
metric for sample preparation. TrAC Trends in Analytical Chemistry 149:
116553.
Yap, K.Y. & Tan,
M.C. 2021. Oil adsorption onto different types of
microplastic in synthetic seawater. Environmental Technology &
Innovation 24: 101994.
*Corresponding author; email: wan.afiq@umt.edu.my
|