Sains Malaysiana 52(8)(2023): 2191-2207

http://doi.org/10.17576/jsm-2023-5208-03

 

Removal Efficiency for Micro-Polystyrene in Water by the Oil-Based Ferrofluid Employ Response Surface Methodology

(Keberkesanan Penyingkiran Mikro-Polisterina dalam Air oleh Bendalir Magnetik Berasaskan Minyak menggunakan Kaedah Gerak Balas Permukaan)

 

NATASHA NIZAM1, SUMITHRA MOHANASUNTHAR1, ALYZA A. AZMI1, SABIQAH TUAN ANUAR1,

YUSOF SHUAIB IBRAHIM1 & WAN MOHD AFIQ WAN MOHD KHALIK1,2,*

 

1Microplastic Research Interest Group, Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia

2Water Analysis Research Centre, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

 

Received: 15 February 2023/Accepted: 12 July 2023

 

Abstract

This research article presents a study on the potential use of oil-based ferrofluid for the efficient removal of microplastics from water. The targeted analyte, micro-polystyrene (micro-PS), was chosen along with palm oil as the carrier liquid. Fourier Transform Infrared (FTIR) analysis was conducted to identify the main peaks in the ferrofluid, including carboxyl group (1542   cm-1), C-H bonding (1022 cm-1), CH2 bonding (2941 cm-1), CH3 bonding (3461 cm-1), C=C bonding (1255 cm-1), and Fe-O (597.34 cm-1). A comprehensive investigation of the synergistic effect of six variables was performed: volume of oil (4-15 mL), weight of magnetite nanoparticles (0.1-0.2 g), stirring rate (132-468 rpm), contact time (3-12 min), pH value of water samples (pH 6-8), and effect on ionic strength (0-16 g/L). Response surface methodology, including 26-Plackett-Burman and 24-central composite design, were employed to establish the relationship between the variables. The optimum operational settings proposed by the model were as follows: volume of oil (14.6 mL), weight of magnetite nanoparticles (0.1 g), stirring rate (216 rpm), contact time (3.29 min), pH value of water samples (pH 6-6.5), and effect on ionic strength (16 g/L), resulting in a remarkable removal efficiency of 91.09 ± 0.99%. The method exhibited desirable figures of merit, including a low bias (%RSD) of below 5% and the ability to reuse the ferrofluids for up to five cycles. Additionally, an analytical greenness metric was employed to assess the environmental impact of the sample preparation process, with a green score of 0.69/1.0 (indicating a light green colour). Future work in this field could focus on the scalability of the developed method and its applicability to real-wastewater treatment.

 

Keywords: Emerging contaminant; magnetic separation; marine debris; microplastic

 

Abstrak

Artikel penyelidikan ini membincangkan satu kajian mengenai kegunaan berpotensi bendalir magnetik berasaskan minyak untuk penyingkiran yang berkesan bagi mikroplastik daripada air. Analit sasaran, mikro-polisterena (mikro-PS), dipilih bersama dengan minyak kelapa sawit sebagai cecair pembawa. Analisis Transformasi Fourier Inframerah (FTIR) telah dijalankan untuk mengenal pasti puncak-puncak utama dalam bendalir magnetik, termasuk kumpulan karboksil (1542 cm-1), ikatan C-H (1022 cm-1), ikatan CH2 (2941 cm-1), ikatan CH3 (3461 cm-1), ikatan C=C (1255 cm-1) dan Fe-O (597.34 cm-1). Kajian menyeluruh tentang kesan sinergi enam pemboleh ubah telah dijalankan: isi padu minyak (4-15 mL), berat nanozarah magnetit (0.1-0.2 g), kadar pengacuan (132-468 rpm), masa sentuhan (3-12 min), nilai pH sampel air (pH 6-8) dan kesan ke atas kekuatan ion (0-16 g/L). Kaedah gerak balas permukaan, termasuk 26-Plackett-Burman dan 24-reka bentuk komposit pusat digunakan untuk menetapkan hubungan antara pemboleh ubah tersebut. Tetapan operasi optimum yang dicadangkan oleh model adalah seperti berikut: isi padu minyak (14.6 mL), berat nanozarah magnetit (0.1 g), kadar pengacuan (216 rpm), masa sentuhan (3.29 min), nilai pH sampel air (pH 6-6.5) dan kesan ke atas kekuatan ion (16 g/L) yang menghasilkan kecekapan penyingkiran yang baik pada tahap 91.09 ± 0.99%. Kaedah ini menunjukkan ciri prestasi yang diingini, termasuk kebolehan untuk digunakan semula hingga lima kitar bagi bendalir magnetik dan ralat rendah (%RSD) di bawah 5%. Tambahan pula, satu metrik kelestarian analitik digunakan untuk menilai impak alam sekitar proses penyediaan sampel dengan skor kelestarian 0.69/1.0 (mewakili warna hijau muda). Penyelidikan masa depan dalam bidang ini boleh memberi tumpuan kepada skalabiliti kaedah yang dibangunkan dan kebolehgunaannya dalam rawatan air sisa sebenar.

 

Kata kunci: Bahan pencemar baharu muncul; mikroplastik; pemisahan magnetik; serpihan sampah

 

REFERENCES

Amelia, T.S.M., Khalik, W.M.A.W.M., Ong, M.C., Shao, Y.T., Pan, H.J. & Bhubalan, K. 2021. Marine microplastics as vectors of major ocean pollutants and its hazards to the marine ecosystem and humans. Progress in Earth and Planetary Science 8(1): 1-26.

Asadollahzadeh, M., Tavakoli, H., Torab-Mostaedi, M., Hosseini, G. & Hemmati, A. 2014. Response surface methodology based on central composite design as a chemometric tool for optimization of dispersive-solidification liquid–liquid microextraction for speciation of inorganic arsenic in environmental water samples. Talanta 123: 25-31.

Bezerra, M.A., Santelli, R.E., Oliveira, E.P., Villar, L.S. & Escaleira, L.A. 2008. Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta 76(5): 965-977.

Chen, F., Liu, X., Li, Z., Yan, S., Fu, H. & Yan, Z. 2021. Investigation of the rheological properties of Zn-ferrite/perfluoropolyether oil-based ferrofluids. Nanomaterials 11(10): 2653.

Choong, W.S., Hadibarata, T., Yuniarto, A., Tang, K.H.D., Abdullah, F., Syafrudin, M., Al Farraj, D.A. & Al-Mohaimeed, A.M. 2021. Characterization of microplastics in the water and sediment of Baram River estuary, Borneo Island. Marine Pollution Bulletin 172: 112880.

Davudabadi Farahani, M., Shemirani, F., Fasih Ramandi, N. & Gharehbaghi, M. 2015. Ionic liquid as a ferrofluid carrier for dispersive solid phase extraction of copper from food samples. Food Analytical Methods 8(8): 1979-1989.

Deng, Y., Zhang, Y., Lemos, B. & Ren, H. 2017. Tissue accumulation of microplastics in mice and biomarker responses suggest widespread health risks of exposure. Scientific Reports 7(1): 46687.

Hamzah, S., Ying, L.Y., Azmi, A.A.A.R., Razali, N.A., Hairom, N.H.H., Mohamad, N.A. & Harun, M.H.C. 2021. Synthesis, characterisation and evaluation on the performance of ferrofluid for microplastic removal from synthetic and actual wastewater. Journal of Environmental Chemical Engineering 9(5): 105894.

Hanrahan, G. & Lu, K. 2006. Application of factorial and response surface methodology in modern experimental design and optimization. Critical Reviews in Analytical Chemistry 36(3-4): 141-151.

Henriques, K. 2022. Analysis of the microplastic removal efficiency of synthesized ferrofluids and the development of an automated prototype for aquatic environments. The Columbia Junior Science Journal 2022: 1-5.

Hüffer, T., Weniger, A.K. & Hofmann, T. 2018. Sorption of organic compounds by aged polystyrene microplastic particles. Environmental Pollution 236: 218-225.

Issac, M.N. & Kandasubramanian, B. 2021. Effect of microplastics in water and aquatic systems. Environmental Science and Pollution Research 28(16): 19544-19562.

Javed, M., Shaik, A.H., Khan, T.A., Imran, M., Aziz, A., Ansari, A.R. & Chandan, M.R. 2018. Synthesis of stable waste palm oil based CuO nanofluid for heat transfer applications. Heat and Mass Transfer 54: 3739-3745.

Joseph, A. & Mathew, S. 2014. Ferrofluids: Synthetic strategies, stabilization, physicochemical features, characterization, and applications. ChemPlusChem 79(10): 1382-1420.

Kadakia, K. 2012. Removal of arsenic contamination from water using magnetite nanoparticles. The National High School Journal 2012: 1-7.

Khalik, W.M.A.W.M., Ibrahim, Y.S., Anuar, S.T., Govindasamy, S. & Baharuddin, N.F. 2018. Microplastics analysis in Malaysian marine waters: A field study of Kuala Nerus and Kuantan. Marine Pollution Bulletin 135: 451-457.

Lapointe, M., Farner, J.M., Hernandez, L.M. & Tufenkji, N. 2020. Understanding and improving microplastic removal during water treatment: Impact of coagulation and flocculation. Environmental Science & Technology 54(14): 8719-8727.

Li, J., Huang, W., Xu, Y., Jin, A., Zhang, D. & Zhang, C. 2020. Microplastics in sediment cores as indicators of temporal trends in microplastic pollution in Andong salt marsh, Hangzhou Bay, China. Regional Studies in Marine Science 35: 101149.

Li, L.C. & Li, I.K. 2021. Study of ferrofluid and magnetic fields. Proceedings of the International Conference on Industrial Engineering and Operations Management. pp. 6751-6761.

Liu, H., Zhou, X., Ding, W., Zhang, Z., Nghiem, L.D., Sun, J. & Wang, Q. 2019. Do microplastics affect biological wastewater treatment performance? Implications from bacterial activity experiments. ACS Sustainable Chemistry & Engineering 7(24): 20097-20101.

Ma, B., Xue, W., Hu, C., Liu, H., Qu, J. & Li, L. 2019. Characteristics of microplastic removal via coagulation and ultrafiltration during drinking water treatment. Chemical Engineering Journal 359: 159-167.

Ma, M., Liu, S., Su, M., Wang, C., Ying, Z., Huo, M., Lin, Y. & Yang, W. 2022. Spatial distribution and potential sources of microplastics in the Songhua River flowing through urban centers in Northeast China. Environmental Pollution 292: 118384.

Martinez, L. & Kim, B. 2020. Removal of microplastics in water using oil-based ferrofluid solution. New Jersey City University. 

Mušović, J., Vraneš, M., Papović, S., Gadžurić, S., Ražić, S. & Trtić-Petrović, T. 2023. Greener sample preparation method for direct determination of Cd (II) and Pb (II) in river sediment based on an aqueous biphasic system with functionalized ionic liquids. Journal of Molecular Liquids 369: 120974.

Nabeel Rashin, M., Kutty, R.G. & Hemalatha, J. 2014. Novel coconut oil based magnetite nanofluid as an ecofriendly oil spill remover. Industrial & Engineering Chemistry Research 53(40): 15725-15730.

Nayebi, R. & Shemirani, F. 2021. Ferrofluids-based microextraction systems to process organic and inorganic targets: The state-of-the-art advances and applications. TrAC Trends in Analytical Chemistry 138: 116232.

Oda, S. & Kitamoto, Y. 2017. Relationship between ion concentration of ferrofluid and response signals of magnetic nanoparticles against ac magnetic fields. AIP Advances 7(5): 056729.

Oehlsen, O., Cervantes-Ramírez, S.I., Cervantes-Avilés, P. & Medina-Velo, I.A. 2022. Approaches on ferrofluid synthesis and applications: Current status and future perspectives. ACS Omega 7(4): 3134-3150.

Peñalver, R., Costa-Gómez, I., Arroyo-Manzanares, N., Moreno, J.M., López-García, I., Moreno-Grau, S. & Córdoba, M.H. 2021. Assessing the level of airborne polystyrene microplastics using thermogravimetry-mass spectrometry: Results for an agricultural area. Science of The Total Environment 787: 147656.

Phor, L. & Kumar, V. 2019. Self-cooling by ferrofluid in magnetic field. SN Applied Sciences 1: 1-9.

Pizzichetti, A.R.P., Pablos, C., Álvarez-Fernández, C., Reynolds, K., Stanley, S. & Marugán, J. 2021. Evaluation of membranes performance for microplastic removal in a simple and low-cost filtration system. Case Studies in Chemical and Environmental Engineering 3: 100075.

Poerio, T., Piacentini, E. & Mazzei, R. 2019. Membrane processes for microplastic removal. Molecules 24(22): 4148.

Pramanik, B.K., Pramanik, S.K. & Monira, S. 2021. Understanding the fragmentation of microplastics into nano-plastics and removal of nano/microplastics from wastewater using membrane, air flotation and nano-ferrofluid processes. Chemosphere 282: 131053.

Rajala, K., Grönfors, O., Hesampour, M. & Mikola, A. 2020. Removal of microplastics from secondary wastewater treatment plant effluent by coagulation/flocculation with iron, aluminum and polyamine-based chemicals. Water Research 183: 116045.

Scherer, C. & Figueiredo Neto, A.M. 2005. Ferrofluids: Properties and applications. Brazilian Journal of Physics 35: 718-727.

Shi, X., Chen, Z., Liu, X., Wei, W. & Ni, B.J. 2022. The photochemical behaviors of microplastics through the lens of reactive oxygen species: Photolysis mechanisms and enhancing photo-transformation of pollutants. Science of The Total Environment 2022: 157498.

Shi, Z.G., Zhang, Y. & Lee, H.K. 2010. Ferrofluid-based liquid-phase microextraction. Journal of Chromatography A 1217(47): 7311-7315.

Siipola, V., Pflugmacher, S., Romar, H., Wendling, L. & Koukkari, P. 2020. Low-cost biochar adsorbents for water purification including microplastics removal. Applied Sciences 10(3): 788.

Sun, J., Dai, X., Wang, Q., van Loosdrecht, M.C. & Ni, B.J. 2019. Microplastics in wastewater treatment plants: Detection, occurrence and removal. Water Research 152: 21-37.

Tofa, T.S., Kunjali, K.L., Paul, S. & Dutta, J. 2019. Visible light photocatalytic degradation of microplastic residues with zinc oxide nanorods. Environmental Chemistry Letters 17: 1341-1346.

Wang, H., Meng, Y., Li, Z., Dong, J. & Cui, H. 2022. Steady-state and dynamic rheological properties of a mineral oil-based ferrofluid. Magnetochemistry 8(9): 100.

Wenzel, M., Fischer, B., Renner, G., Schoettl, J., Wolf, C., Schram, J., Schmidt, T.C. & Tuerk, J. 2022. Efficient and sustainable microplastics analysis for environmental samples using flotation for sample pre-treatment. Green Analytical Chemistry 3: 100044.

Wojnowski, W., Tobiszewski, M., Pena-Pereira, F. & Psillakis, E. 2022. AGREEprep–Analytical greenness metric for sample preparation. TrAC Trends in Analytical Chemistry 149: 116553.

Yap, K.Y. & Tan, M.C. 2021. Oil adsorption onto different types of microplastic in synthetic seawater. Environmental Technology & Innovation 24: 101994.

 

*Corresponding author; email: wan.afiq@umt.edu.my

 

 

 

 

 

 

 

 

previous